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determination of confidence intervals for parameters in nonlinear modeis.
We have applied the approach to the analysis of equilibrium sedimentation
data and have demonstrated that, although models for analyzing such
data are formally nonlinear they are functionally linear. As such, linear
approximation confidence intervals for the parameters are adequate for
these models and data sets.

Further, we have been able to examine the effect of implementing a
multiple independent variable approach (in this case, using multiple rotor
speeds) on the precision of the analysis. We found that the standard errors
of the parameters were reduced and that this is accounted for by either
the increase in the number of data points or the decreases in parameter
correlation. In this case, profiling helped to visualize the effect on the
sum of squares surface of reducing parameter correlation, making the
effect of the small decreases in the correlation of some parameters
more evident.

Using profiling, it should be easy to explore other methods for the
improvement of the analysis of ultracentrifugation data and to be able to
quantitate the improvement. With the above discussion as an example, it
is likely that the profiling approach should be quite useful and broadly
applicable in the analysis of data in terms of nonlinear models.
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[22] Boundary Analysis in Sedimentation
Velocity Experiments

By WALTER F. STAFFORD III

Introduction

Measurement of the sedimentation velocity of macromolecular parti-
cles was the first type of analysis to which the analytical centrifuge was
applied.!-* This chapter describes briefly the earlier methods of analysis
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of sedimentation velocity data that were used before the advent of digital
computers. Then, using this discussion as a point of reference, it proceeds
to describe approaches that have become practical because of the availabil-
ity of computers. It then goes on to describe newer techniques that have
become possible through the introduction of modern on-line digital data
acquisition systems. Special emphasis is placed on techniques employing
the time derivative of the concentration distribution.*®

Traditionally, sedimentation transport experiments have been ob-
served in two main ways, as either the concentration or concentration
gradient as a function of radius depending on the type of optical system
employed. The schlieren optical system displays the boundary in terms
of refractive index gradient as a function of radius; the Rayleigh optical
system, in terms of refractive index as a function of radius; and the
absorption optical system, in terms of optical density as a function of
radius. This chapter concerns itself mainly with treatment of data obtained
with the latter two types of systems since the acquisition and analysis of
data from these systems can be nearly completely automated.

Subjects to be discussed are techniques for smoothing and differentia-
tion as well as a new analysis technique that uses the time derivative of
the concentration profile. Use of the time derivative results in an automatic
baseline elimination with a consequent increase in accuracy. Combination
of the time derivative with an averaging procedure has resulted in an
increase of 2-3 orders of magnitude in precision. The time derivative
technique produces what is referred to as an apparent sedimentation coef-
ficient distribution function, g(s*), where the symbols are defined below.
The function g(s*) versus s* is very nearly geometrically similar to the
corresponding schlieren pattern that represents dn/dr versus r (where n
is the refractive index and r is the radius) and, therefore, can be used in
any situation that one would have used a schlieren pattern. The advantage
of using the averaged g(s*) is that it has about 2 orders of magnitude
higher signal-to-noise ratio than dn/dr and, therefore, can be used to
study interacting systems that previously were inaccessible to either the
absorbance or Rayleigh optical systems. Extrapolation procedures for
minimizing the effects of diffusion on the resolution of boundaries are
also discussed briefly.

2T. Svedberg and H. Rinde, J. Am. Chem. Soc. 45, 943 (1923).

3T. Svedberg and H. Rinde, J. Am. Chem. Soc. 46, 2677 (1924).

4 W. F. Stafford, in **Methods for Obtaining Sedimentation Coefficient Distributions’’ (S. E.
Harding, A. J. Rowe, and J. C. Horton, eds.) p. 359. Royal Society of Chemistry, Cam-
bridge.

5'W. F. Stafford, Anal. Biochem. 203, 295 (1992).

6 W. F. Stafford, Biophys. J. 61, A476 (1992).
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For convenience, we refer to the data from either system in terms of
concentration rather than optical density or refractive index. However,
various averages computed from these data will be weighted according
to either the extinction coefficients or the refractive index increments of
the various components in a mixture depending on the optical system em-
ployed.

The concentration data acquired by either optical system can be
thought of as composed of two main parts: a time-dependent part that is
due to the transport of macromolecule and a time-independent background
part due to inhomogeneities in the optical system, detector, and cell win-
dows. If the concentration is sufficiently high, the background part often
can be ignored. However, in those cases for which the background contri-
bution is a significant fraction of the signal, a correction for the background
must be carried out by some means. The usual ways have been to perform
a separate run without protein in the cell or to allow the material to pellet
completely before taking a background scan. After the sedimentation run
has been completed, the background contribution is subtracted from each
scan. The first method is usually satisfactory as long as there have been
no changes in the background between the main scans and the background
scan. The second method requires that there be no slowly sedimenting
material. Accumulation of dirt from drive oil, fingerprints, or the effects
of moisture condensation, for example, could be sources of variation in
the background between the main run and the background run. Ideally,
a background run should be performed both before and after the main
run to determine whether there have been any changes during the run.
The importance of a background correction becomes evident if the concen-
tration data are to be treated by numerical differentiation to produce
concentration gradient curves. Variations in the background can often be
of the same magnitude as those of the concentration and can obscure the
true gradient curves.

Methods of Data Acquisition

Traditionally, acquisition of data from the schlieren and Rayleigh opti-
cal systems has been done by photography on glass plates or estar thick
based film. Subsequent analysis of the photographs was carried out visu-
ally using an optical microcomparator with manual logging of the data.
Various schemes for automating this process have been devised. A particu-
larly useful procedure was devised by DeRosier et al. for analysis of
Rayleigh interferograms.’” Essentially, this procedure, along with various

7 D. J. DeRosier, P. Munk, and D. Cox, Anal. Biochem. 50, 139 (1972).
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derivatives of it, uses a Fourier transform analysis to extract the phase
changes, and hence the concentration changes, associated with deflection
of fringes in interferograms. A second advance was the introduction of
on-line video photography to eliminate the wet photography steps. With
the introduction of charge-coupled device (CCD) video cameras, Laue8
has devised an on-line video acquisition system that has become the
basis for many current video systems. A video acquisition system for the
Beckman Instruments (Palo Alto, CA) Model E analytical ultracentrifuge
that allows very rapid capture and analysis of the whole cell image of
Rayleigh interferograms every 4 sec has been devised by Liu and Stafford®
and allows the rapid data acquisition necessary for time derivative analysis
with multicell rotors. For example, images from five cells in a Model-E
AN-G rotor can be acquired, converted to fringe displacement as a func-
tion of position, and the results stored on disk every 20 sec.

The Spinco Division of Beckman Instruments has introduced the Op-
tima XL-A analytical ultracentrifuge equipped with modern UV scanning
optics. Profiles of absorbance as a function of radius are automatically
acquired and stored as data files readable by other software.

Measurement of Transport in Analytical Ultracentrifuge

The basis for the analysis of transport in the ultracentrifuge is the
continuity equation presented by Lamm!°

[acl(art, t):l, _ %(%{Dr [ac((; t)] - wrsc(r, t)}x

where ¢ is the concentration as a function of radius and time, r is the
radius, ¢ is time, s is the sedimentation coefficient, D is the diffusion
coefficient, and w is the angular velocity of the rotor. Flux, J, owing to
sedimentation alone is given by the product of the velocity of the particles
and their concentration:
d
Jed = ~—;c = wlsrc

Flux owing to diffusion alone is given by Stokes’ first law and is propor-
tional to the concentration gradient:

de
Jogg = —D <z)f

8 T. M. Laue, Ph.D. Dissertation, University of Connecticut, Storrs (1981).
®S. Lin and W. F. Stafford, Biophys. J. 61, A476 (1992).
100, Lamm, Ark. Mat. Astron. Fysik. 21B (1929).
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Traditional Methods of Analysis

A detailed account of the traditional manual methods of data analysis
is not given since they are adequately represented in the literature''-"?
and have been supplanted mainly by methods made practical by the intro-
duction of computers. For sedimentation velocity experiments using the
schlieren optical system, the main piece of information obtained was the
radial position of the peak in the refractive index gradient curve as a
function of time. One obtained the sedimentation coefficient from the
slope of a plot of the logarithm of the radial position of the peak versus
time. Similarly, for the UV photoelectric scanner and the Rayleigh optical
systems, one plotted the logarithm of the radial position of the midpoint
of the sedimenting boundary versus time. However, neither of these meth-
ods will give highly accurate results unless the boundary is symmetrical;
therefore, they can be applied rigorously only to a hydrodynamically ideal,
homogeneous, monodisperse solution.

The correct method for obtaining accurate estimates of the sedimenta-
tion coefficient for cases that exhibit asymmetric or polymodal bound-
aries is the so-called second moment method in which an equivalent
boundary position is computed. It gives the position of a hypothetical
boundary that would have been observed in the absence of diffusion
and polydispersity (Fig. 1). The rate of movement of the equivalent
boundary position gives the weight average sedimentation coefficient
for the system and corresponds to the weight average velocity of
particles in the plateau region at the plateau concentration. The equiva-
lent boundary position can be computed in several different ways
depending on the form of the data.'">" The term second moment is
generally applied to data obtained with the schlieren optical system
from which the equivalent boundary position is obtained as the second
moment of the refractive index gradient curve:

r,dc

p 2
—rdr
"m dr

f:"% dr

(r?) =

1 C. Chervenka, ‘A Manual of Methods,’” Spinco Division of Beckman Instruments, Palo
Alto, California, 1973.

12T, Svedberg and K. O. Pederson, ‘‘The Ultracentrifuge.”” Oxford Univ. Press, New
York, 1940.

B Y. K. Schachman, ‘Ultracentrifugation in Biochemistry.”” Academic Press, New
York, 1959.

4 H. Fujita, ‘‘Foundations of Ultracentrifugal Analysis.”” Wiley, New York, 1976.
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F1G. 1. Hypothetical sedimentation boundary showing the meniscus, equivalent boundary
position, plateau, and base of the cell.

However, when the data are obtained as concentration versus radius
instead of concentration gradient versus radius, it is convenient to compute
the equivalent position from the following relation:

f;" r?dc
(ry="o__

fr"dc

After obtaining the equivalent boundary position at various times, one
then computes the weight average sedimentation coefficient from the slope
of a plot of the logarithm of the equivalent boundary position versus time.
The slope of a plot In({(r?)) versus ¢ is 2w’s,,, where s, is the weight
average sedimentation coefficient. It should be noted that this method is
valid only if the concentration gradient is zero at r,. An appropriate
baseline correction is required for high accuracy.

Transport Method

The transport method is used in cases for which diffusion does not
allow the boundary to move away completely from the meniscus. It is
similar in computational complexity to the equivalent boundary method.
Essentially, one measures the amount of material between the meniscus
and some point in the plateau region that is removed by sedimentation
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during a given time interval. This amount can be converted to Jy4, and,
with a knowledge of the plateau concentration, one can compute the
sedimentation coefficient. The validity of this method also depends on a
negligible gradient in the plateau region. The relation may be derived in
the following way (for other derivations, see refs. 13 and 14).

By integrating the Lamm equation,

[ac(r, t)] _ li{Dr [9‘3_(”_5)] — wirisc(r, t)}
dt y ror ar ' !
we have

([t o i) o]

m

and now, after bringing the differential operator outside of the integral,
we have

% U:: c(r, Or dr]r = {Dr [___ac(ar; t)]t — w?risc(r, t)}:p

m

and since there is no net transport across the meniscus, we have the
ac(rp, 1)
ar

dclar = Oatr,, giving us an expression for mass transport from the region
between r,, and r, across the cylindrical surface at r;:

condition that {Drm [ ] — w?risclry, t)} = Qatr,,. Wealso have
t

% [L “elr, Dr dr] = —w’risc(ry, 1)
If we designate the integral as ‘

om = | " et Ordr

m ‘

and note that ¢(r,, 1) = coexp(— 2w?s,,t) where ¢, is the initial concentra- ‘
tion, then we have

(2—? = —w'riscoexp(—2w’st)
By rearranging and integrating and since
r c
0t = 0) = co [ "rdr =303 = rd)

m

L
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we have

Co"ﬁl

2
£ exp(—2wst) — 5

o ==

By rearranging and taking the logarithm of both sides, we arrive at

2
In [&(g) + (r_m) ] = —2w’st
Coly rp
A plot of the left-hand side versus ¢ will have a slope of —2w?s.

For a polydisperse system, the value of s obtained is the weight average
sedimentation coefficient, s,,, for the mixture, and ¢, is the total initial
concentration. Note again that this method requires that there be no
gradient in the plateau region at r,. It also requires a knowledge of c,.

Transport Method Using Time Derivative

A simple variant of the transport method can be used if the time
derivative of the concentration is available. ' Starting again with the Lamm
equation, by rearranging and integrating, but now keeping the differential
operator inside the integral, we have

r T,
J’ ? <£> rdr = [Dr (%) - wzrzsc] ’
rm \OL/r or/; Yo
Noting again that transport across the meniscus is zero and that dc/dr =
0 in the plateau region at r,, we have after rearranging

1 »{dc
§=—55 f — | rdr
—@rpcyJy \0t/r

Again this approach requires that there be no gradient in the plateau region
atr,. The values of dc/d¢ as a function of r can be estimated with sufficient
accuracy by subtracting concentration profiles closely spaced in time
so that (¢, — ¢)/(t, — t,) at each radial position can be used in place of
dc/at, and (c,; + c,,)/2 in place of c,, where the numerical subscripts
refer to the two scans. For numerical computation, this equation can be
recast as:

"p

2 (c; — ¢y);r;Ar

’m

2
—w?ri(c,; + cp2)(ty — 1)

s =

15 W. F. Stafford III, unpublished (1994).
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Again, for a polydisperse system, the procedure gives the weight average
sedimentation coefficient, s,,. This method is insensitive to noise because
the integration averages out the random noise and is unaffected by the
baseline contributions except for the determination of c,,.

Smoothing and Differentiating

To obtain a usable derivative curve, dc/dr, from the concentration
profile by numerical differentiation, some degree of smoothing usually
will be required. This section discusses some techniques used successfully
in our laboratory. There are many variations of these techniques that will
also work well if applied properly. The particular methods discussed below
are presented because they are simple to use and produce reasonably
good results.

Although smoothing will always introduce some degree of systematic
dispersion and, therefore, should be carried out with caution, it can be
justified in many cases as long one is aware of the magnitude and type of
errors introduced. Several methods of smoothing that produce minimal
distortion of the data are discussed along with a Fourier analysis of their
frequency response.

As an aside, if one is using least squares fitting for parameter estima-
tion, one should not smooth before fitting since the least squares procedure
is itself a smoothing process, and the analysis of the residual noise is
necessary for evaluation of the ‘‘goodness of fit’’ and for computation of
the confidence limits of the fitting parameters. In the procedure described
below, the noise of the original, unsmoothed data is used to compute the
error bars for the smoothed g(s*) plots.

Smoothing and Differentiating as Filtering

Smoothing and differentiation can be considered as filtering processes
and have an associated frequency response (see Diagram 1).16

data

faw | smooth - differentiate | ———4@p» g‘iﬁmd

DIAGRAM 1

16 C. S. Williams, ‘‘Designing Digital Filters.”” Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1986.
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Analysis of Frequency Response of Smoothing Filters

The perfect smoothing filter is one that will remove the unwanted noise
and reveal the pure signal without distorting it. In a real situation, this
will not be possible if the noise and the signal have overlapping power
spectra. If any of the spatial frequency components of the noise are in
the same range as those of the true concentration distribution, then those
components cannot be removed without also removing them from the
data. Therefore, a compromise will have to be reached.

Procedure for Determining Frequency Response Given
Filter Coefficients

Briefly, the procedure is as follows (see Ref. 16). First, determine the
impulse response of the filtering operation to get the coefficients of the
filter. Determining the coefficients in this manner is useful since it would
allow one to create a filter that could be applied in one pass instead of
several passes if desired. Second, compute the Fourier transform of the
filter coefficients to obtain the power spectrum. The power spectrum is
the frequency response of the filtering operation. This series of operations
is represented in Diagram 2.

For example, if one wanted to know the frequency response for three
passes of a simple moving average over the data, one could pass the
moving average over the unit impulse three times to obtain the coefficients
of the equivalent single-pass filter and then subject those coefficients to
a Fourier transform. The power spectrum of that Fourier transform is the
frequency response for the combined filtering operation. Figure 2a shows
the results of passing a 5S-point moving average over the unit impulse four
times. Figure 2a shows a plot of the filter coefficients after each pass, and
Fig. 2b shows the frequency response of each of the filters represented
in Fig. 2a. A single pass of a moving average results in large side lobes
in the frequency response curve allowing some of the high frequency
components to pass through. The second and third passes reduce the side
lobes to much smaller values, and subsequent passes do not improve the
overall frequency response very much. Although each pass lowers the

filter FFT

unitimpulse =~ —Y——@p»  impulse responsc i’ frequency response
filter coefficicnts

DIAGRAM 2

—
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FiG. 2. (a) Plot of the filter coefficients obtained by passing a S-point moving average
over the unit impulse four times. For a S-point centered moving average filter-the coefficients
are defined by the following relationship: c_yx;_; + ¢_1Xi—f + CoX; + Co1Xip1 T C42Xis2s
where ¢, are the filter coefficients and x; are a subset of the data to be filtered. For this
moving average, the c; values are all equal to 0.2. On the first pass, one of the x; = 1 (i.e.,
the unit impulse) and the other x values are set equal to zero. After the first pass, the x; are
replaced by the filter coefficients which now become the data for the second pass of the
moving average. Each new set of filter coefficients is generated by repeating this process.
(b) Plot of the frequency response of each of the filters represented by the sets of filter
coefficients obtained from the impulse response shown in (a). 8 is defined by the following
equations that were used to compute the Fourier transform of the filter coefficients. The
sine transform is given by S(8) = X I ¢, sin(k6); the cosine transform by C(6) = 3 2 ¢y
cos (k#); and the power spectrum (i.e., frequency repsonse) by P(6) = [S(6)? + C(0)2]'",
where § = im/N and —N < i < N, and the sums are over & and i, respectively. N was 300
in this case.

cutoff frequency somewhat, the cutoff frequency is best controlled by
varying the number of points in the moving average. Therefore, smoothing
and differentiation can be combined into one process, if the appropriate
set of coefficients is chosen by the impulse response method.

The rest of this discussion is confined to the repeated application of
moving averages (i.e., first-order polynomials) since they can be computed
rapidly by recursion, and aimost any desired low-pass frequency response
can be obtained. For example, it is quicker to pass the 5-point moving
average three times than it is to pass the equivalent 13-point filter once
since the coefficients of the moving average are all equal and the first
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F1G. 2. (continued)

point can be removed and the next added without recomputing all the
intermediate terms. However, the 13-term equation has unequal coeffi-
cients requiring that all 13 terms be recomputed before adding them to
compute the value for the smoothed point. The recursion formula for the
n-point moving average is

) — Yi—(-1/2 + Yit1+m-1/2
n

Yirn) =y n

j=n
where the first smoothed value is given by (y ;) = % >y
j=1

The speed can be increased somewhat more, eliminating all the multi-
plications on each pass, by casting the process as

nyi) = niy;) — Yicn=12 T Yir1+(-1i2

and then after the pth pass dividing each term by n? (where p is the number
of passes) for a total of N multiplications (where N is the number of data
points) and 2pN additions. Incidently, smoothing with formulas for higher
order polymonials also require at least three passes to reduce the side
lobes to acceptable levels, and they also have unequal coefficients.

The justification for using repeated applications of a simple moving
average, instead of either higher order polynomials or more complicated
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filtering operations that necessitate convolution, is the speed of applica-
tion. For example, the three passes of the recursive moving average (this
is not a recursive filter, by the way) to a data set of N points requires
approximately 6N additions with N multiplications to rescale the data at
the end. Application of a higher order polynomial, for which all the terms
would have to be recomputed after shifting to each new point, would
require approximately N2 multiplications and additions.

The filtering process is essentially the convolution of the smoothing
polynomial with the data; therefore, application of a sliding polynomial
to the data can be treated in terms of convolution. Convolution can be
carried out rapidly using the fast Fourier transform (FFT).!® The convolu-
tion theorem states that

FFT(f*g) = FFT(f)FFT(g)

where g is the data and fis the filter and the asterisk denotes convolution.
FFT(f) is just the frequency response of the filter and may be considered
to be known since it need be computed only once ahead of time. Convolu-
tion by this method would require one FFT, followed by N complex
multiplications and followed by an inverse FFT to arrive at the filtered
data, f* g. Each FFT requires N log, N complex multiplications (4 multipli-
cations and 2 additions) and complex additions (2 additions) for a total of
8N log, N multiplications and additions. Because of the savings in com-
puter time afforded by the repeated application of the recursive moving
average, it is used almost exclusively in our laboratory. It is interesting
to note that the frequency response of the 3-pass moving average filter is
nearly identical to that of the popular von Hann window function often
used in smoothing by convolution. Figure 3 shows a plot of the window
coefficients for a 13-point von Hann window compared to those for the
13-point equivalent 3-pass moving average filter. It is gratifying that the
faster recursive moving average procedure can give essentially the same
results as the more time-consuming and complex convolution proce-
dure.

In the computer algorithm used in our laboratory, the end points are
handled by starting with a 3-point moving average for the first three points
and then by expanding the window 2 points at a time until the full window
is reached. The full window is used until the end of the data is reached,
where the process is reversed by decreasing the window size 2 points at
atime. The moving average is passed over the data three times. Variation
in the degree of smoothing is controlled by changing the window size.
The typical default for smoothing our time derivative data is to use a
window spanning about 2% of the distance from the meniscus to the base.

t
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Fi1G. 3. Comparison of the filter coefficients of the 3-pass moving average (A) to those
of the corresponding 13-point von Hann window function (0)).

If more detail is desired, the smoothing can be turned off. It is sometimes
necessary to turn the smoothing off to track down outliers.

Differentiation

The derivative of the concentration profile can be estimated by various
polynomial fitting techniques. Differentiation and smoothing often have
to be combined to get satisfactorily smooth curves. As mentioned above,
a single polynomial fitting equation can be derived that will accomplish
both smoothing and differentiation by using the coefficients obtained after
application of the smoothing and the differentiating functions to the unit
impulse function. The frequency response of the combined process can
be computed by taking the Fourier transform of the coefficients. Applica-
tion of the resulting polynomial can be accomplished by FFT convolution
as mentioned above.

A simple and successful procedure used in our laboratory for differenti-
ation has been to use a sliding 4-point cubic polynomial fit to equally
spaced data spanning 13 points typically spaced at about 40 wm intervals
in the centrifuge cell:

de 1
<Er_>, = E(Ci—6 —8¢;_3 + 8cip3 — Cive)
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where Ar is the radial spacing. This differentiating procedure combined
with smoothing was used in a study of filament formation of Acantha-
moeba myosin-11."7

Computation of Apparent Sedimentation Coefficient
Distribution Functions

The methods to be described for computation of apparent sedimenta-
tion coefficient distribution functions are all derived from theoretical rela-
tionships predicated on the assumption that the diffusion coefficient of
each species is zero. A rigorously correct distribution function will be
obtained only for that case. The assumption of zero diffusion coefficient
can be made with good approximation for many solutions of very high
molecular weight polymers; however, when these relations are used in
cases of nonnegligible diffusion, one obtains an apparent distribution func- Y
tion that has been broadened by the effects of diffusion. There are several
extrapolation methods that can be used to correct for the effects of dif-
fusion.*!®

The techniques described below concentrate mainly on the uses of the
uncorrected apparent distribution function as a tool for sedimentation
boundary analysis, especially as a technique for revealing details of bound-
ary shape for the analysis of both heterogeneous and reversibly associating
systems. As mentioned above, the apparent differential distribution func-
tion [g(s*) versus s*] and the refractive index gradient (schlieren) curve
(dn/dr versus r) are very nearly geometrically similar to one another, and,
therefore, both show the same details of boundary shape. A derivative
pattern is useful because it can reveal features that often are not otherwise
obvious by direct inspection of a concentration boundary profile. In addi-
tion, the increase in signal-to-noise ratio achieved by using the time deriva-
tive combined with averaging to compute g(s*) has extended the ability
to investigate interacting systems to much lower concentrations than pre-
viously possible with any given optical system,*¢

Differential Distribution Functions

Before the methods themselves are discussed, it is worth making a
point concerning nomenclature. In the past, the apparent distribution
function has been designated g*(s) versus s. However, when these pat-
terns are used for boundary analysis it seems more appropriate to designate
them as g(s*) versus s* since s* is a radial coordinate whose value can

7). H. Sinard, W. F. Stafford, and T. D. Pollard, J. Cell Biol. 109, 1537 (1989).
8 K. E. Van Holde and W. O. Weischet, Biopolymers 17, 1387 (1978).

_
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be interpreted as a sedimentation coefficient only under special circum-
stances. One special circumstance already mentioned is in the case of
negligible diffusion. Another is that the value of s* at the peak of a
symmetrical boundary for a monodisperse solute corresponds to within
a very good approximation to the sedimentation coefficient, s, for that
species.

Method Using Spatial Derivative

In 1942, Bridgman'? presented an equation for computing the differen-
tial distribution function for systems exhibiting no diffusion:

-2
g dr \ c, o

¥ where ¢ is the initial loading concentration and the other symbols have
their usual meaning. The radial derivative can be obtained either directly
from the schlieren optical system or by numerical differentiation of the
concentration profile from either the absorbance or the Rayleigh optical
system. Various useful differentiation and smoothing methods have been
discussed above, and a recent example of the use of the radial derivative,
computed by numerical differentiation of absorbance traces from the UV
photoelectric scanner of the Beckman Instruments Model-E ultracentri-
fuge, to compute averaged g*(s) curves in a study of filament formation
J of Acanthamoeba myosin-I1, has appeared'’ as already mentioned above.

‘ Method Using Temporal Derivative

Sedimentation patterns in the form of concentration as a function of
radius are acquired and stored in digital form. Pairs of curves appropriately
spaced in time are subtracted from one another at corresponding radii to
produce difference curves. If the time difference between the curves is
made sufficiently small, the difference curve will be a good approximation
to the time derivative of the original sedimenting boundary at each radial
b position.’ The use of the time derivative results in an automatic baseline
] elimination. When used in conjunction with rapid data acquisition systems
1 that allow signal averaging, the use of the time derivative can result in
several (from 2 to 3) orders of magnitude increase in the signal-to-noise
ratio.

After the pairs of concentration curves are subtracted to give a set
curves of dc/dt versus r, the x axis of each derivative curve is then

¥ W. B. Bridgman, J. Am. Chem. Soc. 64, 2349 (1942).

—_—
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converted to s* by the following relationship, which transforms the
dc/dt curves from the stationary reference frame of r to the moving refer-

ence frame of s*:
1 ¥
s* = —wzzln <_r ) (0

m

In this moving reference frame, the dc/dt curves obtained over a small
time interval will superimpose and can be averaged to reduce the random
noise contributions. The value of ¢ to be used in Eq. (1), and in others
used for the numerical computation of g(*s), is the harmonic mean of the
sedimentation times of the concentration profiles. For data obtained from
the XL-A ultracentrifuge, one must get the sedimentation time from the
value of w?t included in each output file.

Detailed Procedure

The specific example described here applies to data obtained with the
Beckman Instruments Optima XL-A analytical ultracentrifuge. The data
are collected in digitized form and stored as text files from which two
arrays of data can be extracted; one is the absorbance, and the other is the
value of the radius at which the absorbance was measured at a particular
sedimentation time, say, #,:

c(1,t),¢2,t),¢cB,t;),...,c(n, ty)
r(1,¢,),r(2,¢)),r(3, ty), ..., r(n, t))

The value of (dc/dt), at each radial position is estimated by subtracting
pairs of sedimentation patterns point by point at corresponding values of
r. However, because the data from any two successive scans usually are
not acquired at the same radial positions on the XL-A ultracentrifuge,
the curves have to be interpolated onto the same radial grid before the
subtraction can be performed. Typically, a grid spacing of 0.002 cm is
chosen for a grid between 5.8 and 7.2 cm. After a pair of scans has been
interpolated onto this grid, they can be subtracted to obtain Ac/Ar at
each value of r. The result is an estimate of (dc/d¢), with the automatic
elimination of the time-independent optical background. After subtracting
and dividing by At, we have :

C(r» t2)obs = C(r’ 12)true + C(r)background + noise
- [C(l‘, tl)obs = C(r’ tl)true + C(r)background + noise]
Ac(Pgps AP e

= V2 - noi
A7 Al + 0 + V2-noise
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If the time interval is sufficiently small that Ac/Ar =~ dc/dt, then Ac/At
can be converted to an apparent sedimentation coefficient distribution
function according to the procedure previously presented’:

! ¥ = (9 1) e [(rY
! 8(s%) = <at>corr (CO) [In(rm/r)] (rm> @

where (9¢/d1)., is the value of (9¢/d1), corrected for the plateau contribu-
tion as described® and repeated in detail below. The product of ¢, and
(r/r)?* is the plateau concentration at each point, and if these two factors
are eliminated from Eq. (2) we have the unnormalized distribution function
referred to below as g(s). This function can be used in much the same
way as a schlieren pattern is used.

Calculation of (9¢/9t),. For the purposes of this discussion, we assume
that 10 scans have been acquired and will be converted to a single apparent
sedimentation coefficient distribution, g(s*). If we designate the scans by
! C,, C,, C;, etc., then the difference curves are computed as follows:

-

At te —
(3) - =G
At)y t;—t,

Lig — 15

The x axis of each curve is converted to s* using Eq. (1). The later curves
are subtracted from the earlier ones to change the sign of Ac/At so that
the curves are positive for graphical purposes. Except near the base of
the cell, beyond the so-called hinge point, (dc/at), is negative throughout
the cell.

Averaging dc/at. The five curves for Ac/At as a function of s* are
then averaged at constant values of s* to produce the averaged value,
designated as (Ac/Ar). The averaged value is inserted into Eq. (2) for
computation of the apparent distribution function.

—
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Computation of Error Estimates. The standard deviation, o, for each
point on the averaged g(s*) curves is computed from the standard devia-
tion of the average of Ac/At using the following standard relation for
propagation of errors:

ag(s*) |?
Ué = [ﬁ%} [O'(Zac/az)]

where o .y, is the standard deviation of Ac/At and dg/dc is obtained by
differentiating Eq. (2) and is just

ag(s*) (1) w?t? <r>2 t 5
= — —] =— 2w%s*t
a(ac/ar) co/ LIn(r,/r) | \ry Cos* expw’s™1)

The standard error of estimate for each averaged point on the curve
is calculated by dividing the standard deviation by n'?, where n is the ¥
number of curves used in the average. It is worth pointing out that although
the errors in 6¢/dt are usually uniformly distributed across the cell, those

in g*(s) are not because of their dependence on 1/s*, so that both the
noise and the error bars tend to become larger at smaller values of s*.

Correcting for Contribution to dc/dt in Plateau Region

Equation (2) gives the normalized differential sedimentation coefficient
distribution corrected for radial dilution. This equation was predicated on
the assumption that the diffusion coefficient of each species was zero
and, therefore, that each boundary contributing to the curve could be
represented by a step function. Under this condition, the contribution
from radial dilution to the total value of dc/at at the boundary position
of any given species is affected only by the more centripetal compon-
ents (i.e., those having smaller values of s). The value of (0c/a1), at any
given value of s is proportional to the product of s,, and ¢, at 5. Both s,,
and ¢, can be computed from 2(s), where 2(s) is the unnormalized dis-
tribution function as defined above. So, now, the plateau value of dc/ot
is given by '

% - _ 2 — 2 A
<az>p 20ks,c, = 20 fsg(s)ds

and the unnormalized distribution function is

o 6.
B =1 Jeore | InGrodr)

f
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(5o (- (5
dt Jcorr a1 Jobs at /p

and “‘corr’’ indicates the corrected value and ‘‘obs’’ the observed value
of ac/at.

These three equations imply the following iterative procedure to cor-
rect dc/at. First, compute an approximate value of (s) using the observed

value of dc/at:
2(s) = (E) ol
818 approx 91 Jobs | In(r,/r)

Then use this value to compute an approximation to the plateau value of
dc/dt at each point:

where

OCI90) pagrox = = 2078, = =207 [ 52(5) o ds

Subtract this from (d¢/d1) s to get an approximate value of (3¢/3¢) o, approx.
Substitute (3¢/d1) o approx iNt0 the above equation to compute a new value
for 2(s)approx- Repeat the cycle until the desired degree of convergence is
attained. In practice, three iterations will give satisfactory convergence.
The integration is carried out simply using the trapezoidal rule as follows:

+ i=n—1
Area=<y’2y"+ Zy,-)As*
i=2

where n is the number of points, As* is the spacing in s*, and, in this
case, y; = §;£(s;). In the algorithm used in this laboratory, the g(s*)
curves are interpolated onto an equally spaced grid of s*, mainly for
subsequent extrapolation to correct for diffusion, so that As* is a constant
and, therefore, can be taken outside of the summation.

Weight Average Sedimentation Coefficient from g(s*)

The weight average sedimentation coefficient can be estimated from
g(s¥*), even in the case of significant diffusion, according to the following
relationship with quite good accuracy:

f’*=s*p 2(s*)s* ds*

s*=0

Sy = SF=s
Jooly T8(s%) ds*

s
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FIG. 4. (a) Data obtained from a sedimentation velocity experiment on the Beckman
Instruments Optima XL-A analytical ultracentrifuge. Bovine serum albumin and aldolase
(from Sigma, used without further purification) were dialyzed against 0.1 M NaCl, 10 mM
phosphate, 1 mM dithiothreitol, pH 7.0, at 2° overnight. Ten plots of absorbance at 280 nm
as a function of radius obtained at approximately I-min intervals are given. The raw data
were interpolated onto an equally spaced radial grid of 0.002 cm. Temperature of the run
was 20°. (b) Plots of Ac/At versus s* obtained after subtracting pairs of concentration
profiles as described in the text. The heavy line shows the average Ac/ At plot using a 2%
window as outlined in the text. (c) Smoothed and unsmoothed g(s*) versus plots. Smoothing
was performed on the averaged Ac/At data with three passes of a simple moving average
using a window spanning 2% of the distance from meniscus to base. (d) Averaged g(s*)
plot for the system. The error bars are the standard error of the mean at each value of g(s*)
propagated from the averaging of Ac/At.
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F1G. 4. (continued)

This method will give s, to a very good approximation because the g(s*)
curves for each component are symmetrical and very nearly Gaussian on
the s* scale. A detailed description of the use of g(s*) for the analysis of
self-associating and heteroassociating systems will be presented else-
where.
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Experimental Example

As an experimental example of the method, a mixture of bovine serum
albumin and aldolase (Sigma, St. Louis, MO) was run at 60,000 rpm in
0.1 M NaCl, 10 mM phosphate, 1 mM dithiothreitol at pH 7.0 and 20° in
the Beckman Instruments Optimal XL-A analytical ultracentrifuge. Figure
4a shows 10 profiles of optical density (A,g ) as a function of radius
acquired at approximately I-min intervals. The raw data were interpolated
onto an equally spaced radial grid of 0.002 ¢cm, and pairs of profiles were
subtracted at equal radial positions as described above to compute
Ac/At. Figure 4b shows the resulting Ac/A¢ versus s * plots. The heavy line
shows the average Ac/At plot. Figure 4c shows smoothed and unsmoothed
g(s*) versus s* plots. Smoothing was performed on the averaged Ac/At
data with three passes of a simple moving average using a window spanning
2% of the whole data array from meniscus to base as outlined above. This
degree of smoothing has produced a visually more pleasing result without
introducing significant dispersion. Figure 4d shows the final plot of g(s*).
The error bars are the standard error of the mean propagated from the
averaged values of Ac/A¢. It is important to note that the error bars were
computed from the original unsmoothed data and reflect the noise in the
original curves.

Methods of Correcting Distribution Functions for Effects of Diffusion

The rate of boundary spreading owing to heterogeneity is roughly
proportional to the first power of time, whereas that owing to diffusion
is roughly proportional to the square root of time. Therefore, if the distribu-
tion functions are extrapolated to infinite time, the spreading from diffusion
will become negligible compared to that from heterogeneity, and the true
distribution function will be recovered. Various forms for extrapolation
have been proposed in the literature and are discussed briefly below.

Differential Distribution Functions

Extrapolation of differential distribution functions to infinite time to
remove the effects of diffusion was first described by Baldwin and Wil-
liams,*?! who extrapolated the functions at constant values of s*. The
functions of g*(s) were extrapolated versus 1/f to 1/t = 0. Recently,
several new forms that improve the extrapolation have been presented.* It

2J. W. Williams, R. L. Baldwin, W. Saunders, and P. G. Squire, J. Am. Chem. Soc. T4,
1542 (1952).
3 R. L. Baldwin and J. W. Williams, J. Am. Chem. Soc. 12, 4325 (1950).
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was sometimes observed that extrapolations versus 1/¢ resulted in negative
values of the distribution function in regions where one expected them to
goto zero. If the curves were extrapolated as In[g *(s)] versus a quadratic in
1/¢'2, better results could be obtained since the extrapolation is con-
strained to the positive domain of g(s) by taking the logarithm.*

Integral Distribution Functions

A method for computation of integral sedimentation coefficient distri-
bution functions was first introduced by Gralén and Lagermalmin 1952.'4-22
In that procedure, an apparent sedimentation coefficient was computed
at each of several levels of the boundary. The apparent sedimentation
coefficient is given by s* = In(r/r,)/w>t. The values of s* computed at
corresponding levels of successive boundary profiles are then extrapolated
to infinite time to remove the contribution from diffusion. In the original
method the values of s* were extrapolated versus 1/f to 1/t = 0. The
method has been improved by Van Holde and Weischet,'® who noted that
a better approximation to the theoretically correct extrapolation could be
attained if the values of s* were extrapolated versus 1/¢!2.

Discussion

With the introduction of the Beckman Instruments Optima XL-A ana-
lytical ultracentrifuge, the processes of data acquisition in sedimentation
experiments have now become largely automated. Analysis of these data,
from both sedimentation equilibrium and velocity experiments, can be
done entirely by digital computer. The speed and efficiency of analysis
possible with a computer have allowed not only easier analysis by the
older, more common methods but also the implementation of methods,
both new and old, that would have been previously impractical.

In this chapter, I have briefly reviewed the older methods and intro-
duced two new methods based on the time derivative of the concentration
distribution. The ability to compute the time derivative, especially from
data obtained with real-time Rayleigh optical systems,®® has allowed a
significant increase in the sensitivity of sedimentation velocity experi-
ments. The process of computing the time derivative results in an auto-
matic baseline correction. This baseline correction combined with averag-
ing of the data can result in an increase in precision of 1-2 orders of
magnitude with the UV photoelectric scanning system and 2-3 orders of
magnitude with Rayleigh optics. The new methods are well suited to real-
time sedimentation analysis.

2 N. Gralén and G. Lagermalm, J. Phys. Chem. 56, 514 (1952).



